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Abstract

A summary of research conducted during the first year is presented. The research objectives were
sought by conducting two tasks: (1) investigation of probabilistic design techniques for reliability-
based design of composite sandwich panels, and (2) examination of strain energy density failure
criterion in conjunction with response surface methodology for global-local design of damage
tolerant helicopter fuselage structures. This report primarily discusses the efforts surrounding the
first task and provides a discussion of some preliminary work involving the second task.

1. Reliability-Based Design of Composite Sandwich Panels

A reliability-based design of a rectangular sandwich plate with anisotropic face sheets and edges
elastically restrained against rotation is investigated. The plate, as shown in Fig. 1, is optimized for
minimum weight subject to a reliability constraint against axial and shear buckling. The influence of
reliability requirement on the optimal design is evident by comparing the results of the probabilistic
design with those of a deterministic design.

The plate is modeled based on the general small-deflection theory of sandwich plates with the mean
values of the in-plane buckling loads determined using the Rayleigh-Ritz method according to the
procedure discussed by Marcellier and Rais-Rohani'. The plate design is optimized using the
modified method of feasible directions in DOT 2 software.

Figure 1. General description of the sandwich plate model



1.1 Reliability Analysis

The reliability is defined here as the probability that the panel will not buckle under the applied load.
Mathematically, this statement can be expressed as

Re = P( >fi.) (1)

In this context, the performance function that describes plate reliability is given as

Z = fi_r - N,_ = g('_) (2)

where ._ is the vector of basic random variables affecting plate reliability, and g(.) is a function that
describes the relationship between the performance function and the basic random variables. Plate
failure is defined by Z < 0; plate survival is defined by Z > 0; and the limit state is defined by Z = 0.

In advanced second-moment method (ASM) for calculating plate reliability, the basic random
variables are transformed into a normalized coordinate system according to the relation

_i=(Yi-/l;,)/a_, for/= 1, 2, ..., n
(3)

The resulting normalized random variables have mean of zero and standard deviation of one (i.e.,

/.re*=0and ax. _ = 1). Based on ASM the shortest distance, in the reduced coordinate system,

measured from the origin to the limit state (Z = 0) or failure surface defines the reliability index/3

also known as the Hasofer-and-Lind (HL) index.

The iterative procedure described by Ayyub and McCuen 3 is used here to calculate /3. The plate

reliability is then calculated using the relationship between/3 and the probability of failure given by

Pf = 1 - _(/3) = 1 - R e
(4)

The decision on what reliability method to use followed an initial comparison between ASM and the
first order reliability method (FORM). Although the latter is easier to implement, it was found to
underestimate plate reliability mainly due to the non-linearity of the performance function. Hence,

only ASM was used in reliability-based optimization.

1.2 Effectivity Analysis Based on Taguchi Method

In order to identify the statistically significant parameters affecting the buckling response of a
sandwich plate, a design of experiments (DOE) was set up based on the principles of Taguchi
method. Eleven main factors at two levels and four two-factor interactions were considered in the

DOE. Using the L16 orthogonal array a total of sixteen experiments were conducted. The order of

factors influencing the panel buckling strength is found to be hc, t, t*h c, K, t'K, G n, Gzx, 0, Gyz, v,

t*0, E 2, E_, (a/b)*K, and a/b. The description of each parameter and its mean value are given in

Table 1. Among all factors the face sheet ply thickness and the core thickness are found to have the
most significant influence on the buckling load. Details of this investigation including the robust
design configuration for buckling load maximization can be found in ref. 4.



Table 1. Description of basic random variables
Basic Random Variable Mean CoV, % Distribution

axial load, Nx

axial load, N_

plate length, a
plate width, b

edge rotational stiffness along
y = 0, b edges, K = bK/D22

Face Sheets: graphite-epoxy
ply thickness"

ply angle b

Young's modulus, E 1
Young's modulus, E 2

shear modulus, @2
Poisson's ratio, v_2

Core: aluminum honeycomb
thickness a

shear rigidity, Gxz

shear rigidity, Gy:

design variables
bFor the 0 ° ply a standard deviation of _ 1° is used

2000 N/mm 2.5 Normal

2000 N/mm 2.5 Normal

254 mm 5.0 Normal

254 mm 5.0 Normal
10 5.0 Normal

to, tes, t 4s, t9o 5.0 Normal
0, 45, -45, 90 5.0 Normal

229 GPa 2.5 Normal
13.35 GPa 2.5 Normal
5.25 GPa 2.5 Normal

0.315 2.5 Normal

h c 5.0 Normal
0.146 GPa 2.5 Normal

0.0904 GPa 2.5 Normal

1.3 Probabilistic Design Optimization

For the composite sandwich plate the probabilistic optimization problem is formulated as

Min. fiX, Y)

s.t. fl tim,, (5)

Ft<F_<F "

where the objective functionfis the plate weight, Y is the vector of design variables, representing a

subset of the random variable vector ._, defined in Table 1, and fl,,i, is the required minimum

reliability index which in this case is set to 3.09 for a reliability of 0.999. All random variables are
assumed to have normal distributions with specified means and assumed coefficients of variation

(CoV) given in Table 1.

Each face sheet is an unsymmetric quasi-isotropic laminate with four plies made of graphite-epoxy
material. The sandwich plate is symmetric about its midplane surface. The mean values for ply and
core thicknesses are treated as the only design variables in the optimization process. In the

probabilistic design problem the performance function in Eq. (2) is approximated as

].IZ = jA(_[cr)_ ].l(Na ) (6)

with mean value of the buckling load obtained from the deterministic procedure described in ref. 1.



1.4 Deterministic Design Optimization

For the composite sandwich plate the deterministic optimization problem is formulated as

Min. fl._, Y)

s.t. FG > FS (-Na) (7)

FI__F<F _

where the objective function f is the plate weight, and FS is the factor of safety against buckling.
The design variables in this case are assumed to be deterministic. The design reliability is
calculated for the optimal design as a post-optimization step.

1.5 Results and Discussion

The deterministic and probabilistic optimization problems are solved each for two different loading

conditions (N x and N..). In each case the bounds on design variables are: 0.0254 mm < t,_y < 7.62
mm and 0.254 mm < h c < 16.51 mm. The face sheet material has a density of 1600 kg/m 3 "_hile the

honeycomb core has an effective density of 27.1 kg/m 3.

To demonstrate the effect of rotational edge stiffness, three different plate boundary conditions are
considered. In the first case the plate is assumed to be simply supported, i.e., K 1 = K 3 = K 2 = K 4 =

0. In the second case the plate is simply supported at x = 0 and a edges but elastically restrained

against rotation along the other two edges such that KI - K 3 - 0 and K 2 = K 4 = 10. In the last case,
the rotational stiffness along y = 0, b edges is increased to infinity making those two edges

clamped. For each case, the optimal design is obtained for three different aspect ratios (a/b=0.5, 1.0,
and 2.0). The initial design for all cases is chosen as to = t45 = t45 = tg0 = 1.27 mm and hc = 15.24
mm.

The results of optimization are given in Tables 2 and 3. In all cases the core thickness is pushed
near its upper bound. Since thickness has a large influence on plate bending stiffness, it is
reasonable to see the core thickness increase. This increase in thickness causes the face sheets to

move farther apart, therefore, increasing the plate bending stiffness Dij.

However, a similar increase in thickness is not observed in the face sheet plies. This is because the

density of face sheet plies is significantly higher than that of the core. Hence, increasing the face
sheet thickness has a greater impact on the overall weight of the plate that is being minimized.

The thickness is seen to increase only in plies that offer greater support against buckling. For

example, the contribution of the 90 ° plies against axial buckling is far less than the others.
Therefore, we see this ply thickness remain near its lower bound value in almost all optimal designs.

The deterministic and probabilistic optimal designs for axial loading condition indicate the 0 ° plies
to be the most dominant followed by -45 ° and 45 ° plies. For the positive shear loading case,
however, the 45 ° plies are more dominant than the 0 ° plies. It is expected that for the negative shear
loading the -45 ° plies would be the most dominant. There is also a greater balance between the
+45 ° plies in the axial than in the shear buckling case for all aspect ratios and support conditions

investigated.
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Table 2. Optimal design of (0°/+45°/90°/Core)s sandwich plates under uniaxial compression, N x

(K 1 = K, = 0; Ka = K 4 =bK/D22)

bk/D22 to, mm t45, mm t_s, mm t_, mm h,:, mm Deterministic Design Probabilistic Design

Reliability Weight, gm Reliability Weight, gm

a/b = 0.5, Area = 6.4516 x 10.2 m2

0 0.2750 0.0527 0.0537 0.0254 16.51 0.4920 112.84
0.5096 0.1683 0.0254 0.0254 16.50 0.9990 179.24

10 0.2798 0.0363 0.0365 0.0254 16.51 0.4920 106.90
0.4542 0.0876 0.0888 0.0254 16.51 0.9990 164.26

,,o 0.2418 0.0342 0.0340 0.0254 16.51 0.4920 98.10

0.3808 0.0752 0.0766 0.0254 16.51 0.9990 144.04

a/b = 1.0, Area = 6. 4516 x 10.2 m2

0 0.2594 0.1584 0.1613 0.0254 15.29 0.4920 151.49
0.4237 0.1562 0.1635 0.0271 16.33 0.9987 187.60

10 0.3297 0.0883 0.0929 0.0254 15.30 0.4880 137.46
0.4493 0.0887 0.0912 0.0254 16.48 0.9987 163.95
0.2331 0.0421 0.0490 0.0254 16.36 0.4980 100.76

0.3810 0.0728 0.0785 0.0254 16.51 0.9990 143.97

a/b = 2.0, Area = 6. 4516 x 102 m2

0 0.2382 0.1224 0.1262 0.0254 16.30 0.4880 134.255
0.4205 0.2199 0.2156 0.0271 16.08 0.9991 210.39

10 0.2578 0.0819 0.0869 0.0254 16.51 0.4900 121.09
0.3750 0.1656 0.1759 0.0254 16.37 0.9989 181.75
0.2148 0.0694 0.0678 0.0254 16.50 0.4900 106.76

0.3404 0.1129 0.1169 0.0254 16.50 0.9990 151.77

The deterministic results indicate the axial loading to be a more severe condition than shear loading

for all boundary conditions and aspect ratios. A similar trend is also observed in the probabilistic
results with a few exceptions. The weight of the simply-supported plate under shear loading is

found to be higher than that under axial loading for a/b = 1 and 2.

For both loading conditions, with a few exceptions, increasing plate aspect ratio (for a fixed plate
area) causes the weight to increase. On the other hand increasing the rotational rigidity along the y =
0, b edges causes the weight to decrease due to an increase in plate's resistance against buckling.

With FS = 1.0 in Eq. (7), the reliability of each deterministic optimal design is found to be roughly
50%. The tolerance specified for buckling constraint in the optimization analysis is set at 0.001,
and that is why in most cases the reliability is slightly less than 0.5. The reliability of each
probabilistic optimal design, by contrast, is found to be at or near 0.999.

For comparison, the plate having bk/D22 = 10 and a/b = 1 was optimized for uniaxial compression
with FS = 1.25. The optimal weight is found to be 385.71 gm which is approximately 180% higher
than the corresponding case in Table 2. It is evident that the 25% increase in the factor of safety
results in a substantial increase in the weight.

Additional details of this investigation can be found in ref. 5. Future investigation will focus on
maximization of reliability index and factor of safety (for deterministic design). This approach will
determine the conditions under which the reliability can be increased to its maximum for a specified

plate weight.
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o 4- o oTable 3. Optimal design of (0/_45/90/Core)_ sandwich plates under uniform shear load, N_,

(K 1 = K_ = 0; K s = K 4 =bK/D_2)

bk/D22 to, mm t45, mm t4s, mm tvo, mm h,:, mm Deterministic Design Probabilistic Desi£n

Reliability Weight, gm Reliability Weight, gm

a/b = 0.5, Area = 6. 4516 x I0 -z m 2

0 0.0254 0.0386 0.0254 0.0254 16.51 0.5000 52.58

0.0548 0.0819 0.0254 0.0254 16.51 0.9987 67.58

10 0.0254 0.0257 0.0254 0.0254 16.51 0.4920 49.92

0.0372 0.0729 0.0254 0.0254 16.14 0.9989 61.42

0.0254 0.0254 0.0254 0.0254 16.51 0.5199 49.84

0.0436 0.0566 0.0254 0.0254 16.51 0.9990 60.04

a/b = 1.0, Area = 6. 4516 x 10 .2 m 2

0 0.0621 0.2578 0.0254 0.0254 16.51 0.4841 105.373
0.3518 1.0380 0.0254 0.0254 16.51 0.9990 326.22

10 0.0403 0.2066 0.0254 0.0254 16.51 0.4860 90.320

0.1073 0.4303 0.0254 0.0254 16.50 0.9988 150.29

0.0358 0.1855 0.0254 0.0254 16.50 0.4860 85.000

0.1079 0.2945 0.0254 0.0761 16.50 0.9990 132.86

a/b = 2.0, Area = 6. 4516 x 10 .2 m 2

0 0.0254 0.3817 0.0254 0.0254 16.51 0.4880 123.39

0.1545 1.0867 0.0254 0.0657 16.51 0.9990 303.88

10 0.0254 0.3555 0.0254 0.0254 16.51 0.4920 117.98

0.1189 0.7096 0.0254 0.0968 16.51 0.9989 225.09

0.0254 0.2723 0.0254 0.0264 16.51 0.5000 100.99

0.0548 0.5383 0.0254 0.0690 16.51 0.9990 170.78
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2. Global-Local Design of Damage Tolerant Structures

The second task in this research investigation involves the development of an efficient methodology

for global-local analysis and optimization of damage-tolerant fuselage structures. The main focus
areas are: (1) the application of strain energy density failure criterion, and (2) the development of
response surface models for calculation of panel buckling load for use in global optimization.

The finite element method is used for the global analysis of the structure subject to a
multidimensional loading condition as shown by the model in Fig. 2. The structure in Fig. 2 (a)

represents the global model and the panel in Fig. 2 (b) represents the local model. The global
model is assumed to be simply-supported at the ends with displacements restrained in radial and

angular directions and free in the z direction. The local model is assumed to be simply-supported
along all edges. The global structural model is to be optimized subject to constraints imposed on
maximum strain energy density in each shell element, maximum stress in each bar element, and

buckling of each panel.

z

Z

(b) (a)

Figure 2. (a) Cylindrical fuselage section; (b) Stiffened panel

2.1 Strain Energy Density Failure Criterion

The strain energy density (SED) failure criterion, first proposed by Sih 6, is different from other
classical fracture mechanics methods in that it does not require the presence of an initial flaw of
known size and location. This criterion is based on the fact that strain energy stored in a material

can be divided into dilatational and distortional parts, with failure initiation being associated with the

dilatational part.

SED criterion identifies critical regions in the structure where the dilatational part of strain, energy is
the more dominant part. These regions are found to be susceptible to damage xmtlatlon and

subsequent failure of the structure.

SED criterion of failure can be stated by the following two hypotheses7:

1) Failure is assumed to coincide at locations where the local minima of strain energy density

function (dW/dV)m_ . is at its maximum.

2) Failure initiation occurs when (dW/dV)m_ . reaches its critical value governed by



I dW'_ S, S2 _ S, _ S
.... const. (8)

70-<,) ,-, ,;

Where S<. is the critical strain energy density factor that serves as a measure of the fracture

toughness value of the material and is found using

S (1- 2v)(1 + v)
= _-_7v-7- i G,< (9)

where G_c is the critical energy release rate of the material and v is the Poisson's ratio. The

unstable flacture begins when the ligament size reaches the critical value designated by rc. G L, is
related to the mode I stress intensity factor according to s

K 2

Gs<=(l_v 2) _< (10)
E

where K_c is the critical stress intensity factor for mode I fracture of the material.

The SED criterion has been used for failure prediction in both isotropic and composite materials.
In the case of laminated composite structures, it is used to obtain information on the onset of
delamination v. In that case r represents the distance from the delamination fiont. The onset of
unstable delamination is assumed to coincide with (dW/dV)m_ . reaching its critical value.

Prior to the application of this criterion to the composite fuselage structure, it was tested on a

20" x 10 " x 0.5" aluminum rectangular plate with a 0.1" circular hole at the center. The plate is

considered to be simply supported along exterior edges, and is under the action of uniform axial

tensile force. Due to biaxial symmetry, one quarter of the plate, as shown in Fig. 3, is modeled

for computational analysis. The model contains 120 four-noded quadrilateral shell elements with

882 degrees of freedom.

Y

X

z translation restrained along this edge

y and z
translations

restrained along
this edee

Figure 3. Finite element model of the plate with central circular hole



Symmetricboundaryconditionsareimposedalongthe axesof plate symmetry.The loadededge
is constrainedagainsttranslationin they andz directionswhile the unloadededgeis constrained
only againsttranslationin thez direction.

To determinethe location of failure initiation, the strain energy density contours are first
generated•Figure4 showstheSEDcontoursneartile holecorrespondingto theaxial compressive
loadof 250lb.

', Index
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,.-'J

ff"

x\_i-''/

\

\
l

Figure 4. Strain energy density contours near the hole boundary

The variation of strain energy density along the boundary of the hole is plotted against angular

position, 0 in Fig. 5. Several distinct local minima of the strain energy density function are

observed, among which the maximum occurs at 0 = 78 °. Thus, we can conclude that failure will

initiate at the point on the hole boundary which is at a 78 ° angle from the horizontal axis as

shown in Fig. 6.

According to SED criterion the fracture propagation occurs in the direction where dW/dV reaches

its critical value. In this case the local minima of dW/dV along various radius vectors centered at

the point of fracture initiation need to be calculated. Thus three circles of radii ",, = 0.005 in,

0.010 in, 0.015 in are drawn. Using the plot ofdW/dV versus 0, as shown in Fig. 7, the maximum
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of (dW/dV)mmis found to occurat approximately50°. The directionof damagepropagation is

shownin Fig. 8.
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Figure 5. Strain energy density variation with angular position showing the location of failure
initiation to be at 78 °

/

Location of

damage
initiation

78 °

Figure 6. Point of failure initiation at the hole boundary
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propagation to be around 50 +

Figure 8. Direction of damage propagation

For damage tolerance consideration, a limit will be imposed on the strain energy density function to
prevent it from exceeding the critical value associated with the material system used.
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2.2 Response Surface Methodology

The use of finite element method for buckling analysis of a panel, representing a local model, in the

optimization process of the global structural model would be very time consuming and inefficient.
A more efficient alternative would be to use algebraic models derived from response surface

methodology (RSM).

RSM uses mathematical and statistical techniques to generate algebraic equations for a particular

response based on the specified set of variables or factors. For example, an RS model can be
developed for estimating the buckling strength of a panel based on a set of geometric and/or
stiffness variables.

Prior to applying this method to the composite fuselage structure, we applied it to the aluminum
rectangular plate described in the previous section. The factors considered included the following
geometric attributes: plate thickness, plate aspect ratio, and hole diameter. Since material variation
was not considered, no stiffness parameters were included as independent factors.

The full factorial experiment (FFE) method is used to generate the response data. The FFE
involving k factors with each having two levels is referred to as the 2 k design. With only three
factors in this case, the FFE requires 8 (23) experiments. The experimental conditions are identified
in Table 4. The low and high levels are denoted by -1 and 1, respectively. The low and high levels
for these factors are as follows: plate thickness t = 0.5", 1", aspect ratio a/b = 1, 2, and hole diameter
D = 0.1", 0.2". The loaded edge of the plate (b) is kept constant at 10".

Experiment

Table 4. Experimental conditions and corresponding response values
Treatment Design factors t, in a/b D, in Buckling load (lb)

combinations xt, x2, x3

1 (1) -1, -1, -1 0.5 1 0.1 5.0420E5

2 a 1, -1, -1 0.5 2 0.1 3.2795E6

3 b -1, 1,-1 1 1 0.1 2.4930E5

4 ab 1, 1,-1 1 2 0.1 1.8129E6

5 c -1,-1, 1 0.5 1 0.2 5.0260E5

6 ac 1,-1, 1 0.5 2 0.2 3.2765E6

7 be -1, 1, 1 1 1 0.2 2.4830E5

8 abc 1, 1, 1 1 2 0.2 1.8108E6

Since aspect ratio and hole diameter are geometric entities, any changes in them require the creation
of a separate finite element model. In this case four different finite element models had to be created
in order to account for low and high levels of aspect ratio and hole size. The finite-element based

buckling load corresponding to each experimental condition is given in the last column of Table 4.

The effects of x_, x 2, and x 3 are found as

x 1 = (1/4)[a + ab + ac + abc - (1) - b - c - bc] = 2.1688E6

x 2 = (1/4)[b + ab + bc + abc - (1) - a - c - ac] = -0.8604E6

x 3 = (1/4)[c + ac + bc + abc - (1) - a - b - ab] = -1,925.0

The two-factor interaction effects are found as

12



xlx2= (1/4)[abc- bc+ ab- b - ac+ c - a+ (1)] = -0.6058E6

x_x3= (1/4)[(1) - a+ b - ab - c + ac- bc + abc]= -625.0

x2x3= (1/4)[(1) + a- b - ab - c - ac+ bc + abc]= 375.0

andthethree-factorinteractioneffectis foundas

xtx2x3= (1/4)[abc- bc - ac+ c - ab+ b + a- (1)] = 75.0

Examiningthemagnitudesof theeffectsshowsthe platethickness(xt) to be the most dominant
effectfollowedby aspectratio (x2)andtheXlX2interaction. Theeffectof hole sizein this caseis
ratherinsignificantdueto its smallmagnitude.

Basedon the statisticalanalysison the significanceof eacheffect,a multiple linear regression
modeldefinedby

P' =130+13,x,+132x2+13,:x,x2+c (11)

is the simplestmodel that could be usedto estimatethe platebuckling load as the responseof
interestwith c representingtherandomerror term. In this casetherandomerror term is zero as
computationalsimulationsareusedin placeof physicalexperimentsto generatetheresponsedata.
Therefore,only thefirst four termsareof concernin Eq. (11). Theregressioncoefficients13_,132,

and13_2areestimatedby one half of thecorrespondingeffectestimates,and[30is estimatedby the
averageof thebucklingloadsin FFE. Thus,

P' = 10 6 (1.4605 + 1.0844 x I - 0.4302 x 2 - 0.3029 xlx 2) (12)

is the response surface model for the plate buckling load with corresponding predicted values given
in the fourth column of Table 5. The residual or difference between the finite-element based

"actual" buckling loads and the estimated (fitted) values are shown in the last column of Table 5.

Table 5. Comparison of actual and estimated axial buckling loads

Experiment Design factors FE solution, FFE, P'cr Residual, Standardized
Xl, X2, X3 Per e =Pcr- P', residual, d

1 - 1, - 1, - 1 5.0420E5 5.0340E5 800 0.54928

2 1, - 1, - 1 3.2795E6 3.2780E6 1500 1.02990

3 -1, 1,-1 2.4930E5 2.4880E5 500 0.34330

4 1, 1, -1 1.8129E6 1.81185E6 1050 0.72093

5 -1,-1, 1 5.0260E5 5.0340E5 -800 -0.54928

6 1, - 1, 1 3.2765E6 3.2780E5 - 1500 - 1.02990

7 -1, 1, 1 2.4830E5 2.4880E6 -500 -0.34330

8 1, 1, 1 1.8108E6 1.81185E6 -1050 -0.72093

A normal probability plot of the residuals is shown in Fig. 9. The residuals appear to fall along the

"fat pencil" line indicating the normal distribution of the residuals.
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Figure 9. Normal probability plot of residuals associated with the regression model

The unbiased estimator of the residual variance (3"2 is determined as

n=8

a2 SSE Z e__ _ j=l 8.4850E6- 2.12125E6 (13)

n-p 8-4 4

where SS E is the sum of squares of the residuals, n is the number of experiments, and p is the
number of terms in the regression model. The term n - p in the denominator of Eq. (13) represents
the degrees of freedom associated with the residuals. With the estimator of the variance known, the
standardized residuals are computed using

ej

dr - _5-' j= 1, 2,-.-, n (14)

with the values given in Table 5. Since all the computed standardized residuals fall in the interval of
(-2, 2), the previously observed normal distribution of the residuals is reconfirmed.

Although the linear regression model appears to fit the response data fairly well, it does not
represent the physics of the problem accurately. Looking at the buckling equation for an isotropic
rectangular plate given as

o'er = kc 12__-v2)
(15)
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indicates that buckling is a nonlinear function of plate thickness, with the aspect ratio affecting the
buckling coefficient kc. The nonlinearity of the response surface can be checked by calculating the
response at the center point and comparing it with the average value of the responses at the low and
high levels of thickness and aspect ratio. The finite element analysis of the plate at the center point
corresponding to x_ = x 2 = x 3 = 0 or t = 0.75", a/b = 1.5, and D = 0.15" gives the buckling load of
approximately 1E6 lb. The average value for the buckling load at the four factorial points (x I = -1,
l, x 2 = -1, 1) is 1.46E6 lb. The difference of 46% indicates the presence of curvature at the center
point. Therefore, in this case a second-order response surface described by the equation

P'cr = 13o+ [31 x, + 132x 2 + 13,, X, 2 "{- 1_22 X22 4" _12 XlX2 (16)

should be considered as an alternative to the model in Eq. (11). The central composite design
(CCD) is used in this case to design the experiments for generating the necessary response data. In
CCD the complete or a fraction of 2 k factorial experiments are augmented with 2k axial runs at

value of c_ for each factor and at least one center point. Therefore, for 2 factors, using the full

factorial experiments would require at least 9 experiments. The experimental conditions are shown
in Table 6. The zero level for each factor corresponds to the average value of-1 and I. In this case

ot is set to 2. For thickness, levels -2 and 2 correspond to 0.25" and 1.25", respectively. For aspect

ratio, levels -2 and 2 correspond to 0.5 and 2.5, respectively.

The estimated buckling loads at the new design points using Eq. (12) are given in the fourth column
of Table 6. Unlike the estimates at the original design points, there are major discrepancies at most
of the new design points.

Table 6. Comparison of actual and estimated axial buckling loads
Experiment Design factors FE FFE, P'cr CCD, P'cr CCD, P', CCD, P'cr

X), Xa, Xt solution, Per (1 CP) (3 CP) (5 CP)

1 - 1, - 1, - 1 5.0420E5 5.0340E5 5.022E5 4.899E5 4.861 E5

2 1, -1, -1 3.2795E6 3.2780E6 3.167E6 3.155E6 3.151E6

3 -1, 1,-1 2.4930E5 2.4880E5 3.037E5 2.915E5 2.877E5

4 1, 1,-1 1.8129E6 1.81185E6 1.757E6 1.744E6 1.741E6

5 0, 0, 0 1.0000E6 1.46051 E6 1.059E6 1.028E6 1.019E6
6 -2, 0, 0 4.0626E4 -7.0831E5 -141.25 5.991E3 7.894E3

7 2, 0, 0 4.0476E6 3.6293E6 4.117E6 4.124E6 4.125E6

8 0, -2, 0 2.3146E6 2.3209E6 2.357E6 2.363E6 2.365E6

9 0, 2, 0 7.6226E5 6.0014E5 7.487E5 7.548E5 7.567E5

The least squares method is used to estimate the unknown parameters in Eq. (16). The resulting
second-order response surface equation is found to be

P'crllcp = 10 6 (1.059 + 1.029 x_ - 0.4022 x2 + 0.2499 x_2 + 0.1235 x22 - 0.3029 xtx2) (17)

The estimated buckling loads using Eq. (17) are given in the fifth column of Table 6. As suggested
by Montgomery and Runger 9, three to five central points are usually used to develop a response
surface model. The response surface equations using three and five central points are found to be

P'crl3cp = 10 6 (1.028 + 1.029 x_ - 0.4022 x2 + 0.2591 x_2 + 0.1327 x22 - 0.3029 x_x2) (18)

P'_lscp=106(1.019+l.029 x,-0.4022x2+ 0.2620x_2+ 0.1356x22-0.3029 xlx2) (19)
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with the correspondingpoint estimatesgiven in Table 6. Since there is no random error in
computationalexperiments,theadditionalcentralpointsresult in the samevaluesof responseas
thoseshownfor the correspondingfifth experimentin Table6. It is interestingto note that the
inclusionof additionalcentralpointsaffectedthevaluesof _0,1311,and_22butnot therest.

Themeansquareerror MS E or the unbiased estimator of the residual variance c_2 for each of the

CCD-based models is determined using

2ej

MS E = 6-2 SSE _ j=l (20)
n -p n -6

For one-, three-, and five-central point designs, the value of n is 9, 11, and 13, respectively. The

corresponding 6-2 is found to be 1.02285E10, 6.80391E9, and 4.98889E9 for one, three, and five
central points, respectively. Using Eq. (14) the standardized residuals for each level of the CCD-
based models are computed with the values shown in Table 7.

Table 7. Comparison of actual and estimated axial buckling loads
Experiment Design factors FE Stan. residuals Stan. residuals Stan. residuals

x t, x z, x3 solution, P_r (1 CP) (3 CP) (5 CP)

1 -1,-1,-1 5.0420E5 0.01978 0.17336 0.25626

2 1,-1,-1 3.2795E6 1.11237 1.50935 1.81929

3 -1,1,-1 2.4930E5 -0.53789 -0.51160 -0.54366

4 1, I,-1 1.8129E6 0.55272 0.83530 1.01795

5 0,0,0 1.0000E6 -0.58337 -0.33945 -0.26900

6 -2,0,0 4.0626E4 0.40309 0.41989 0.46342
7 2,0,0 4.0476E6 -0.68621 -0.92622 -1.09582

8 0,-2,0 2.3146E6 -0.41924 -0.58677 -0.71356
9 0,2,0 7.6226E5 0.13408 0.09044 0.07872

The standardized residuals for all three cases fall in the interval of (-2, 2). This implies that the
errors are normally distributed and that there are no outliers. The comparison of the standardized
residuals corresponding to each experiment shows the quadratic response surface model based on a
single center point to be better than the other two. However, using the root mean square error
(MSE) °5 as the key indicator identifies the regression with five center points (5 CP) to have the best
fit.

Another statistic that can be used to determine the quality of fit is the adjusted coefficient of
multiple determination defined as

R2 n - 1 SS e
dj_" a--(___p)Svy

(21)

where SS E denotes the sum of squares of the residuals, and S is the total corrected sum of squares
2 Y

of observations (P,) Based on the data in Table 6, R ad for t_e 1 CP, 3 CP, and 5 CP models are
• i I . .

found to be 0.99484, 0.99480, and 0.99642, respectively. While there is very little difference

between the R2a_j values, the 5 CP model appears to fit the data better.
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In the coming year we plan to incorporate both the strain energy density failure criterion and the

response surface methodology in the design of composite fuselage structure. In that case the local
buckling load would be captured via the response surface equation and the strain energy density
criterion will help introduce a damage tolerance constraint in the global optimization problem.
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